Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
J Ethnopharmacol ; 328: 118108, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38574780

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polygala fallax Hemsl. is a traditional folk medicine commonly used by ethnic minorities in the Guangxi Zhuang Autonomous Region, and has a traditional application in the treatment of liver disease. Polygala fallax Hemsl. polysaccharides (PFPs) are of interest for their potential health benefits. AIM OF THIS STUDY: This study explored the impact of PFPs on a mouse model of cholestatic liver injury (CLI) induced by alpha-naphthyl isothiocyanate (ANIT), as well as the potential mechanisms. MATERIALS AND METHODS: A mouse CLI model was constructed using ANIT (80 mg/kg) and intervened with different doses of PFPs or ursodeoxycholic acid. Their serum biochemical indices, hepatic oxidative stress indices, and hepatic pathological characteristics were investigated. Then RNA sequencing was performed on liver tissues to identify differentially expressed genes and signaling pathways and to elucidate the mechanism of liver protection by PFPs. Finally, Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to verify the differentially expressed genes. RESULTS: Data analyses showed that PFPs reduced the levels of liver function-related biochemical indices, such as ALT, AST, AKP, TBA, DBIL, and TBIL. PFPs up-regulated the activities of SOD and GSH, down-regulated the contents of MDA, inhibited the release of IL-1ß, IL-6, and TNF-α, or promoted IL-10. Pathologic characterization of the liver revealed that PFPs reduced hepatocyte apoptosis or necrosis. The RNA sequencing indicated that the genes with differential expression were primarily enriched for the biosynthesis of primary bile acids, secretion or transportation of bile, the reactive oxygen species in chemical carcinogenesis, and the NF-kappa B signaling pathway. In addition, the results of qRT-PCR and Western blotting analysis were consistent with those of RNA sequencing analysis. CONCLUSIONS: In summary, this study showed that PFPs improved intrahepatic cholestasis and alleviated liver damage through the modulation of primary bile acid production, Control of protein expression related to bile secretion or transportation, decrease in inflammatory reactions, and inhibition of oxidative pressure. As a result, PFPs might offer a hopeful ethnic dietary approach for managing intrahepatic cholestasis.


Assuntos
Colestase Intra-Hepática , Colestase , Polygala , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , 1-Naftilisotiocianato/toxicidade , China , Fígado/metabolismo , Colestase/induzido quimicamente , Colestase/tratamento farmacológico , Colestase/metabolismo , Colestase Intra-Hepática/induzido quimicamente , Isotiocianatos/efeitos adversos , Isotiocianatos/metabolismo , Ácidos e Sais Biliares/metabolismo
2.
ACS Synth Biol ; 13(3): 736-744, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412618

RESUMO

Glucosinolates are plant-specialized metabolites that can be hydrolyzed by glycosyl hydrolases, called myrosinases, creating a variety of hydrolysis products that benefit human health. While cruciferous vegetables are a rich source of glucosinolates, they are often cooked before consumption, limiting the conversion of glucosinolates to hydrolysis products due to the denaturation of myrosinases. Here we screen a panel of glycosyl hydrolases for high thermostability and engineer the Brassica crop, broccoli (Brassica oleracea L.), for the improved conversion of glucosinolates to chemopreventive hydrolysis products. Our transgenic broccoli lines enabled glucosinolate hydrolysis to occur at higher cooking temperatures, 20 °C higher than in wild-type broccoli. The process of cooking fundamentally transforms the bioavailability of many health-relevant bioactive compounds in our diet. Our findings demonstrate the promise of leveraging genetic engineering to tailor crops with novel traits that cannot be achieved through conventional breeding and improve the nutritional properties of the plants we consume.


Assuntos
Brassica , Humanos , Brassica/genética , Glucosinolatos/análise , Culinária , Produtos Agrícolas/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Isotiocianatos/metabolismo
3.
J Am Heart Assoc ; 13(3): e032533, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38240234

RESUMO

BACKGROUND: Elevated inflammatory cytokines in the periphery have been identified as active contributors to neuroinflammation and sympathetic overactivity in heart failure (HF). Yet, the exact mechanisms by which these cytokines breach the blood-brain barrier (BBB) to exert their effects on the brain remain elusive. Interleukin 17A has been linked to BBB disruption in various neurologic disorders, and its levels were significantly augmented in circulation and the brain in HF. The present study aimed to determine whether the BBB integrity was compromised within the hypothalamic paraventricular nucleus (PVN), and if so, whether interleukin 17A contributes to BBB disruption in myocardial infarction-induced HF. METHODS AND RESULTS: Male Sprague-Dawley rats underwent coronary artery ligation to induce HF or sham surgery. Some HF rats received bilateral PVN microinjections of an interleukin 17 receptor A small interfering RNA or a scrambled small interfering RNA adeno-associated virus. Four weeks after coronary artery ligation, the permeability of the BBB was evaluated by intracarotid injection of fluorescent dyes (fluorescein isothiocyanate-dextran 10 kDa+rhodamine-dextran 70 kDa). Compared with sham-operated rats, HF rats exhibited an elevated extravasation of fluorescein isothiocyanate-dextran 10 kDa within the PVN but not in the brain cortex. The plasma interleukin 17A levels were positively correlated with fluorescein isothiocyanate 10 kDa extravasation in the PVN. The expression of caveolin-1, a transcytosis marker, was augmented, whereas the expression of tight junction proteins was diminished in HF rats. Interleukin 17 receptor A was identified within the endothelium of PVN microvessels. Treatment with interleukin 17 receptor A small interfering RNA led to a significant attenuation of fluorescein isothiocyanate 10 kDa extravasation in the PVN and reversed expression of caveolin-1 and tight junction-associated proteins in the PVN. CONCLUSIONS: Collectively, these data indicate that BBB permeability within the PVN is enhanced in HF and is likely attributable to increased interleukin 17A/interleukin 17 receptor A signaling in the BBB endothelium, by promoting caveolar transcytosis and degradation of tight junction complexes.


Assuntos
Barreira Hematoencefálica , Fluoresceína-5-Isotiocianato , Interleucina-17 , Infarto do Miocárdio , Núcleo Hipotalâmico Paraventricular , Transdução de Sinais , Animais , Masculino , Ratos , Barreira Hematoencefálica/metabolismo , Caveolina 1/metabolismo , Citocinas/metabolismo , Dextranos/metabolismo , Dextranos/farmacologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceínas/metabolismo , Fluoresceínas/farmacologia , Insuficiência Cardíaca , Interleucina-17/metabolismo , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Ratos Sprague-Dawley , Receptores de Interleucina-17/metabolismo , RNA Interferente Pequeno/metabolismo
4.
Mol Nutr Food Res ; 68(4): e2300286, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38143283

RESUMO

SCOPE: The glucosinolate glucoraphanin from broccoli is converted to sulforaphane (SFN) or sulforaphane-nitrile (SFN-NIT) by plant enzymes or the gut microbiome. Human feeding studies typically observe high inter-individual variation in absorption and excretion of SFN, however, the source of this variation is not fully known. To address this, a human feeding trial to comprehensively evaluate inter-individual variation in the absorption and excretion of all known SFN metabolites in urine, plasma, and stool, and tested the hypothesis that gut microbiome composition influences inter-individual variation in total SFN excretion has been conducted. METHODS AND RESULTS: Participants (n = 55) consumed a single serving of broccoli or alfalfa sprouts and plasma, stool, and total urine are collected over 72 h for quantification of SFN metabolites and gut microbiome profiling using 16S gene sequencing. SFN-NIT excretion is markedly slower than SFN excretion (72 h vs 24 h). Members of genus Bifidobacterium, Dorea, and Ruminococcus torques are positively associated with SFN metabolite excretion while members of genus Alistipes and Blautia has a negative association. CONCLUSION: This is the first report of SFN-NIT metabolite levels in human plasma, urine, and stool following consumption of broccoli sprouts. The results help explain factors driving inter-individual variation in SFN metabolism and are relevant for precision nutrition.


Assuntos
Brassica , Microbioma Gastrointestinal , Nitrilas , Humanos , Isotiocianatos/metabolismo , Sulfóxidos/metabolismo , Glucosinolatos/metabolismo
5.
Redox Rep ; 28(1): 2279818, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38052218

RESUMO

OBJECTIVE: The testis is vulnerable to ionizing radiation, sexual dysfunction and male infertility are common problems after local radiation or whole-body exposure. Currently, there are no approved drugs for the prevention or treatment of radiation testicular injury. Sulforaphane (SFN) is an indirect antioxidant that induces phase II detoxification enzymes and antioxidant genes. Herein, we investigated the radiation protective effect of SFN on testicular injury in mice and its potential mechanism. MATERIALS AND METHODS: Mice were randomly divided into blank control group (Ctrl), radiation + no pretreatment group (IR), and radiation + SFN groups (IRS). In the radiation + SFN groups, starting from 72 h before radiation, SFN solution was intraperitoneally injected once a day until they were sacrificed. Mice in the blank control group and the radiation + no pretreatment group were simultaneously injected intraperitoneally with an equal volume of the solvent used to dissolve SFN (PBS with a final concentration of 0.1%DMSO) until they were sacrificed. They were subjected to 6Mev-ray radiation to the lower abdominal testis area (total dose 2Gy). Twenty-four hours after radiation, six mice in each group were randomly sacrificed. Seventy-two hours after radiation, the remaining mice were sacrificed. RESULTS: The results showed that the harmful effects of ionizing radiation on testes were manifested as damage to histoarchitecture, increased oxidative stress, and apoptosis, and thus impaired male fertility. SFN injections can reverse these symptoms. CONCLUSIONS: The results showed that SFN can improve the damage of mouse testis caused by irradiation. Furthermore, SFN prevents spermatogenesis dysfunction caused by ionizing radiation by activating Nrf2 and its downstream antioxidant gene.


Assuntos
Antioxidantes , Testículo , Masculino , Animais , Camundongos , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Isotiocianatos/uso terapêutico , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia
6.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958895

RESUMO

Gastric cancer (GC) organoids are frequently used to examine cell proliferation and death as well as cancer development. Invasion/migration assay, xenotransplantation, and reactive oxygen species (ROS) production were used to examine the effects of antioxidant drugs, including perillaldehyde (PEA), cinnamaldehyde (CA), and sulforaphane (SFN), on GC. PEA and CA repressed the proliferation of human GC organoids, whereas SFN enhanced it. Caspase 3 activities were also repressed on treatment with PEA and CA. Furthermore, the tumor formation and invasive activities were repressed on treatment with PEA and CA, whereas they were enhanced on treatment with SFN. These results in three-dimensional (3D)-GC organoids showed the different cancer development of phase II enzyme ligands in 2D-GC cells. ROS production and the expression of TP53, nuclear factor erythroid 2-related factor (NRF2), and Jun dimerization protein 2 were also downregulated on treatment with PEA and CA, but not SFN. NRF2 knockdown reversed the effects of these antioxidant drugs on the invasive activities of the 3D-GC organoids. Moreover, ROS production was also inhibited by treatment with PEA and CA, but not SFN. Thus, NRF2 plays a key role in the differential effects of these antioxidant drugs on cancer progression in 3D-GC organoids. PEA and CA can potentially be new antitumorigenic therapeutics for GC.


Assuntos
Antioxidantes , Neoplasias Gástricas , Humanos , Antioxidantes/farmacologia , Apoptose , Terapia Baseada em Transplante de Células e Tecidos , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Organoides/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Sulfóxidos/farmacologia
7.
J Agric Food Chem ; 71(42): 15476-15484, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37818663

RESUMO

The glucosinolate-myrosinase system, exclusively found in the Brassicaceae family, is a main defense strategy against insect resistance. The efficient detoxification activity of glucosinolate sulfatases (GSSs) has successfully supported the feeding of Plutella xylostella on cruciferous plants. With the activity of GSSs hampered in P. xylostella, the toxic isothiocyanates produced from glucosinolates severely impair larval growth and adult reproduction. Therefore, inhibitors of GSSs have been suggested as an alternative approach to controlling P. xylostella. Herein, we synthesized eight adamantyl-possessing sulfamate derivatives as novel inhibitors of GSSs. Adam-20-S exhibited the most potent GSS inhibitory activity, with an IC50 value of 9.04 mg/L. The suppression of GSSs by Adam-20-S impaired glucosinolate metabolism to produce more toxic isothiocyanates in P. xylostella. Consequently, the growth and development of P. xylostella were significantly hindered when feeding on the host plant. Our study may help facilitate the development of a comprehensive pest management strategy that combines insect detoxification enzyme inhibitors with plant chemical defenses.


Assuntos
Adamantano , Glucosinolatos , Animais , Glucosinolatos/farmacologia , Glucosinolatos/metabolismo , Insetos/metabolismo , Plantas/metabolismo , Sulfatases , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo
8.
Iran J Kidney Dis ; 17(5): 245-254, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37838934

RESUMO

INTRODUCTION: Diabetic nephropathy (DN) is the most common clinical complication of diabetes mellitus. Moringa isothiocyanate-1 (MIC-1) is effective in the treatment of diabetes mellitus, but its mechanism of action in DN remains obscure. This research specifically probed the role of MIC-1 in modulating renal injury in DN. METHODS: Six db/m mice were assigned to control group and twelve db/db mice were randomly allocated to the db/db and db/db + MIC-1 groups. The body and kidney weights of the mice were monitored. Renal function indicators and oxidative stress-related markers were assessed by automatic biochemical analyzer and ELISA method. The pathological changes, apoptosis of renal tissues, extracellular regulated protein kinases (ERK) 1/2/ Nuclear factor erythroid2-related factor 2 (Nrf2) pathway-related markers, and the positive expressions of podocalyxin (Pod) and synaptopodin (Syn) were measured by H&E, PAS, and TUNEL staining, Western blot, and IHC assay. RESULTS: MIC-1 reduced the body and kidney weights, and increased the kidney organ index (calculated as 100*kidney weight/ body weight) in db/db mice. In addition, MIC-1 improved renal function, kidney tissue injury, and apoptosis of db/db mice. MIC1 noticeably repressed the contents of reactive oxygen species (ROS) and malondialdehyde (MDA) and enhanced the contents of (glutathione) GSH, superoxide dismutase (SOD), and catalase (CAT) in db/db mice. At molecular level, db/db mice showed a decrease in p-ERK/ERK, Nrf2, SOD-1, heme oxygenase 1 (HO-1), and CAT and an increase in p- inhibitor kappa B alpha (IKBα) and p-Nuclear factor-kappa B (P65/P65), which were reversed when MIC-1 was administered. Furthermore, MIC-1 facilitated the positive expressions of Pod and Syn of the kidney tissues in db/db mice. CONCLUSION: MIC-1 reduces oxidative stress and renal injury by activating the ERK/Nrf2/HO-1 signaling and repressing the NFκB signaling in db/db mice.  DOI: 10.52547/ijkd.7515.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Moringa , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Moringa/metabolismo , Rim , Estresse Oxidativo , Glutationa , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo , Isotiocianatos/uso terapêutico
9.
Nutrients ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571342

RESUMO

BACKGROUND: Sulforaphane (SFN) is an isothiocyanate of vegetable origin with potent antioxidant and immunomodulatory properties. The characterization of its pleiotropic activity in human dendritic cells (DCs) is poorly summarized. The aim of this work was to study the immunomodulatory power of SFN in response to an inflammatory microenvironment on human monocyte-derived DCs (moDCs). METHODS: We studied the immunological response induced by SFN. Apoptosis and autophagy assays were performed using flow cytometry on moDCs and a cancer cell line (THP-1). These included moDC maturation, lymphocyte proliferation and cytokine production under different experimental conditions. We investigated whether these results were associated with an inflammatory microenvironment induced by lipopolysaccharides (LPSs). RESULTS: Our results demonstrated that SFN could interact with moDCs, significantly reducing the autophagy process and enhancing apoptosis similarly to cancer cell line THP-1 cells in a chronic inflammatory microenvironment. Under chronic inflammation, SFN modulated the phenotypical characteristics of moDCs, reducing the expression of all markers (CD80, CD83, CD86, HLA-DR and PD-L1). SFN significantly reduced the Th2 proliferative response, with a decrease in the IL-9 and IL-13 levels. Although we did not observe any changes in the regulatory proliferative response, we noted an increase in the IL-10 levels. CONCLUSIONS: These findings demonstrate that SFN exerts protective effects against LPS-induced inflammation via the modulation of moDCs/T cells towards a regulatory profile. SFN may be a potential candidate for the treatment of pathologies with an inflammatory profile.


Assuntos
Citocinas , Isotiocianatos , Humanos , Citocinas/metabolismo , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Células Dendríticas , Imunidade , Monócitos/metabolismo , Diferenciação Celular , Células Cultivadas
10.
Phytochem Anal ; 34(8): 925-937, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37443417

RESUMO

INTRODUCTION: Broccoli sprouts have great health and commercial value because they are rich in sulforaphane, a special bioactive compound that helps to prevent chronic diseases, such as cancer and cardiovascular disease. OBJECTIVE: The aim of this study was to increase the levels of active substances in broccoli sprouts and understand their metabolic mechanisms. METHODOLOGY: Metabolomics based on liquid chromatography-tandem mass spectrometry and transcriptome analysis were combined to analyse the enrichment of metabolites in broccoli sprouts treated with cold plasma. RESULTS: After 2 min of cold plasma treatment, the contents of sulforaphane, glucosinolates, total phenols, and flavonoids, as well as myrosinase activity, were greatly improved. Transcriptomics revealed 7460 differentially expressed genes in the untreated and treated sprouts. Metabolomics detected 6739 differential metabolites, including most amino acids, their derivatives, and organic acids. Enrichment analyses of metabolomics and transcriptomics identified the 20 most significantly differentially expressed metabolic pathways. CONCLUSIONS: Overall, cold plasma treatment can induce changes in the expression and regulation of certain metabolites and genes encoding active substances in broccoli sprouts.


Assuntos
Brassica , Gases em Plasma , Gases em Plasma/metabolismo , Transcriptoma , Isotiocianatos/metabolismo , Sulfóxidos/metabolismo , Brassica/genética , Brassica/química , Brassica/metabolismo , Perfilação da Expressão Gênica , Glucosinolatos/metabolismo , Glucosinolatos/farmacologia
11.
Food Chem ; 426: 136603, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37329791

RESUMO

Broccoli sprouts have a strong ability to accumulate isothiocyanate and selenium. In this study, the isothiocyanate content increased significantly as a result of ZnSO4 stress. Particularly, based on the isothiocyanate content is not affected, the combined ZnSO4 and Na2SeO3 treatment alleviated the inhibition of ZnSO4 and induced selenium content. Gene transcription and protein expression analyses revealed the changes in isothiocyanate and selenium metabolite levels in broccoli sprouts. ZnSO4 combined with Na2SeO3 was proven to activate a series of isothiocyanate metabolite genes (UGT74B1, OX1, and ST5b) and selenium metabolite genes (BoSultr1;1, BoCOQ5-2, and BoHMT1). The relative abundance of the total 317 and 203 proteins, respectively, in 4-day-old broccoli sprouts varied, and the metabolic and biosynthetic pathways for secondary metabolites were significantly enriched in ZnSO4/control and ZnSO4 combined Na2SeO3/ZnSO4 comparisons. The findings demonstrated how ZnSO4 combined with Na2SeO3 treatment reduced stress inhibition and the accumulation of encouraged selenium and isothiocyanates during the growth of broccoli sprouts.


Assuntos
Brassica , Selênio , Selênio/metabolismo , Proteoma/metabolismo , Isotiocianatos/metabolismo , Enxofre , Brassica/metabolismo , Glucosinolatos/metabolismo , Sulfóxidos/metabolismo
12.
Nat Commun ; 14(1): 2665, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188667

RESUMO

Stomatal pores in the plant epidermis open and close to regulate gas exchange between leaves and the atmosphere. Upon light stimulation, the plasma membrane (PM) H+-ATPase is phosphorylated and activated via an intracellular signal transduction pathway in stomatal guard cells, providing a primary driving force for the opening movement. To uncover and manipulate this stomatal opening pathway, we screened a chemical library and identified benzyl isothiocyanate (BITC), a Brassicales-specific metabolite, as a potent stomatal-opening inhibitor that suppresses PM H+-ATPase phosphorylation. We further developed BITC derivatives with multiple isothiocyanate groups (multi-ITCs), which demonstrate inhibitory activity on stomatal opening up to 66 times stronger, as well as a longer duration of the effect and negligible toxicity. The multi-ITC treatment inhibits plant leaf wilting in both short (1.5 h) and long-term (24 h) periods. Our research elucidates the biological function of BITC and its use as an agrochemical that confers drought tolerance on plants by suppressing stomatal opening.


Assuntos
Proteínas de Arabidopsis , Estômatos de Plantas , Estômatos de Plantas/metabolismo , Luz , Resistência à Seca , ATPases Translocadoras de Prótons/metabolismo , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo , Proteínas de Arabidopsis/metabolismo
13.
Nutrients ; 15(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36986155

RESUMO

In the last decade, most of the evidence on the clinical benefits of including cruciferous foods in the diet has been focused on the content of glucosinolates (GSL) and their corresponding isothiocyanates (ITC), and mercapturic acid pathway metabolites, based on their capacity to modulate clinical, biochemical, and molecular parameters. The present systematic review summarizes findings of human studies regarding the metabolism and bioavailability of GSL and ITC, providing a comprehensive analysis that will help guide future research studies and facilitate the consultation of the latest advances in this booming and less profusely researched area of GSL for food and health. The literature search was carried out in Scopus, PubMed and the Web of Science, under the criteria of including publications centered on human subjects and the use of Brassicaceae foods in different formulations (including extracts, beverages, and tablets), as significant sources of bioactive compounds, in different types of subjects, and against certain diseases. Twenty-eight human intervention studies met inclusion criteria, which were classified into three groups depending on the dietary source. This review summarizes recent studies that provided interesting contributions, but also uncovered the many potential venues for future research on the benefits of consuming cruciferous foods in our health and well-being. The research will continue to support the inclusion of GSL-rich foods and products for multiple preventive and active programs in nutrition and well-being.


Assuntos
Brassicaceae , Glucosinolatos , Humanos , Disponibilidade Biológica , Brassicaceae/química , Dieta , Isotiocianatos/metabolismo , Verduras/química
14.
Food Funct ; 14(8): 3613-3629, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36946998

RESUMO

Platelet mitochondrial dysfunction is crucial for platelet activation, atherosclerosis and thrombosis. Sulforaphane (SFN) is a dietary isothiocyanate enriched in cruciferous vegetables and possesses multiple health benefits including cardiovascular protection. This study aims to investigate whether and how SFN modulates platelet mitochondrial dysfunction and hyperactivity in vitro and in vivo. Using a series of platelet functional assays in human platelets in vitro, we found that SFN at physiological concentrations attenuated oxidative stress-dependent platelet mitochondrial dysfunction (loss of mitochondrial membrane potential), apoptosis (cytochrome c release, caspase 3 activation and phosphatidylserine exposure) and activation induced by glycoprotein VI (GPVI) agonists (e.g., collagen and convulxin). Moreover, 12-week supplementation of SFN-enriched broccoli sprout extract (BSE, 0.06% diet) in C57BL/6J mice also attenuated GPVI-induced platelet mitochondrial dysfunction, apoptosis and hyperreactivity in vivo. Mechanistically, these inhibitory effects of SFN treatment and BSE supplementation were mainly mediated by up-regulating the cAMP/PKA pathway though decreasing phosphodiesterase 3A (PDE3A) activity. Thus, through modulating the PDE3A/cAMP/PKA signaling pathway, and attenuating platelet mitochondrial dysfunction and hyperreactivity, SFN may be a potent cardioprotective agent.


Assuntos
Isotiocianatos , Transdução de Sinais , Animais , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo , Mitocôndrias
15.
Morphologie ; 107(356): 80-98, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35659716

RESUMO

BACKGROUND: This study examine the histochemical and histomorphological effect of 1-isothiocyanato-4-methyl sulfonyl butane (SFN) on cisplatin (CP) induced testicular alteration and cholesterol homeostasis. MATERIALS AND METHODS: Ninety adult-male Sprague-Dawley rats were randomized into nine groups of ten (n=10) rats each. Group A (control) received normal saline, group B received a single dose of 10mg/Kg body weight (bwt) CP (i.p.), group C received 50mg/Kg bwt of SFN, group D received 100mg/Kg bwt of SFN, group E received 10mg/Kg bwt CP and 50mg/Kg bwt of SFN, group F received 10mg/Kg bwt CP and 100mg/Kg bwt of SFN, group G received 10mg/Kg bwt CP and 50mg/Kg bwt vitamin C, group H received 50mg/Kg bwt of SFN and 10mg/Kg bwt CP, group I received 100mg/Kg bwt of SFN and 10mg/Kg bwt CP. The procedure lasted for 56 days. Testicular histomorphology and histochemistry, testicular testosterone, sperm parameters, total antioxidant status (TSA), total oxidant status (TOS), oxidative stress index (OSI), and serum lipid profile were examined. RESULTS: Cisplatin decrease intra-testicular testosterone, sperm quality, and expression of glycogen and increases testicular TOS and OSI, serum lipid profile, collagen, and disruption of germinal epithelium. However, the intervention of SFN reversed the effect of CP on testes' weight and volume, DSP, ESP, testosterone production, TAS, TOS, and OSI. Histoarchitectecture showing normal seminiferous tubules and even distribution of glycogen and collagen fibers. CONCLUSION: Treatment with SFN ameliorate CP-induced testicular toxicity by reversing the cytotoxic mechanisms of CP.


Assuntos
Cisplatino , Testículo , Masculino , Ratos , Animais , Testículo/metabolismo , Ratos Sprague-Dawley , Cisplatino/toxicidade , Cisplatino/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Testosterona/metabolismo , Testosterona/farmacologia , Antioxidantes/farmacologia , Butanos/metabolismo , Butanos/farmacologia , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Colesterol/metabolismo , Lipídeos/farmacologia
16.
Crit Rev Food Sci Nutr ; 63(20): 4217-4234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35389274

RESUMO

Glucosinolates and their metabolites from Brassicaceae plants have received widespread attention due to their anti-inflammatory effects. Glucosinolates occurs an "enterohepatic circulation" in the body, and the glucosinolates metabolism mainly happens in the intestine. Glucosinolates can be converted into isothiocyanates by intestinal bacteria, which are active substances with remarkable anti-inflammatory, anti-cancer, anti-obesity and neuroprotective properties. This biotransformation can greatly improve the bioactivities of glucosinolates. However, multiple factors in the environment can affect the biotransformation to isothiocyanates, including acidic pH, ferrous ions and thiocyanate-forming protein. The derivatives of glucosinolates under those conditions are usually nitriles and thiocyanates, which may impair the potential health benefits. In addition, isothiocyanates are extremely unstable because of an active sulfhydryl group, which limits their applications. This review mainly summarizes the classification, synthesis, absorption, metabolism, physiological functions and potential application strategies of glucosinolates and their metabolites.


Assuntos
Brassicaceae , Glucosinolatos , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Brassicaceae/química , Brassicaceae/metabolismo , Isotiocianatos/metabolismo , Anti-Inflamatórios/metabolismo
17.
BMC Biotechnol ; 22(1): 35, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434619

RESUMO

BACKGROUND: A mixture of phenol and guanidine isothiocyanate ("P/GI", the principal components of TRIzol™ and similar products) is routinely used to isolate RNA, DNA, and proteins from a single specimen. In time-course experiments of cells grown in tissue culture, replicate wells are often harvested sequentially and compared, with the assumption that in-well lysis and complete aspiration of P/GI has no effect on continuing cultures in nearby wells. METHODS: To test this assumption, we investigated morphology and function of RAW 264.7 cells (an immortalized mouse macrophage cell line) cultured in covered 96-well plates for 4, 8, or 24 h at varying distances from a single control well or a well into which P/GI had been deposited and immediately aspirated completely. RESULTS: Time- and distance-dependent disruptions resulting from proximity to a single well containing trace residual P/GI were seen in cell morphology (blebbing, cytoplasmic disruption, and accumulation of intracellular vesicles), cell function (pH of culture medium), and expression of genes related to inflammation (Tnfα) and autophagy (Lc3b). There was no transcriptional change in the anti-apoptotic gene Mcl1, nor the pro-apoptotic gene Hrk, nor in P/GI-unexposed control cultures. LPS-stimulated cells incubated near P/GI had lower expression of the cytokine Il6. These effects were seen as early as 4 h of exposure and at a distance of up to 3 well units from the P/GI-exposed well. CONCLUSIONS: Exposure to trace residual quantities of P/GI in covered tissue culture plates leads to substantial disruption of cell morphology and function in as little as 4 h, possibly through induction of autophagy but not apoptosis. This phenomenon should be considered when planning time-course experiments in multi-well covered tissue culture plates.


Assuntos
Isotiocianatos , Fenol , Camundongos , Animais , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo , Fenóis/metabolismo , Macrófagos/metabolismo
18.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430307

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for about 90% of cases. Sorafenib, lenvatinib, and the combination of atezolizumab and bevacizumab are considered first-line treatments for advanced HCC. However, clinical application of these drugs has also caused some adverse reactions such as hypertension, elevated aspartate aminotransferases, and proteinuria. At present, natural products and their derivatives have drawn more and more attention due to less side effects as cancer treatments. Isothiocyanates (ITCs) are one type of hydrolysis products from glucosinolates (GLSs), secondary plant metabolites found exclusively in cruciferous vegetables. Accumulating evidence from encouraging in vitro and in vivo animal models has demonstrated that ITCs have multiple biological activities, especially their potentially health-promoting activities (antibacterial, antioxidant, and anticarcinogenic effects). In this review, we aim to comprehensively summarize the chemopreventive, anticancer, and chemosensitizative effects of ITCs on HCC, and explain the underlying molecular mechanisms.


Assuntos
Anticarcinógenos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Anticarcinógenos/farmacologia , Anticarcinógenos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Isotiocianatos/metabolismo
19.
Mol Vis ; 28: 378-393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338670

RESUMO

Purpose: Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has therapeutic efficacy in numerous animal models of human disease, including mouse models of retinal degeneration. However, despite dozens of clinical trials, the compound remains to be tested as a clinical treatment for ocular disease. Numerous cellular activities of SFN have been identified, including the activation of Nrf2, a transcription factor that induces a battery of target gene products to neutralize oxidative and xenobiotic stresses. As Nrf2 expression and function reportedly decrease with aging, we tested whether the loss of the transcription factor limits the therapeutic efficacy of SFN against retinal degeneration. Methods: Six- to 8-month-old wild-type and Nrf2 knockout mice were treated with SFN beginning 1 month after ribozyme-mediated knockdown of superoxide dismutase 2 (SOD2) mRNA in the RPE. The impacts of MnSOD (the protein product of SOD2) knockdown and the efficacy of SFN were evaluated using a combination of electroretinography (ERG), spectral domain optical coherence tomography (SD-OCT), and postmortem histology. Results: SFN restored the ERG photopic b-wave suppressed by MnSOD loss in wild-type mice, but not in the Nrf2 knockout mice. In contrast, ERG scotopic a- and b-wave loss was not restored for either genotype. SFN significantly improved retinal thickness in the Nrf2 knockout mice with MnSOD knockdown, but this was not observed in the wild-type mice. In both genotypes, SFN treatment reduced morphological markers of RPE atrophy and degeneration, although these improvements did not correlate proportionally with functional recovery. Conclusions: These findings highlight the capacity of SFN to preserve cone function, as well as the potential challenges of using the compound as a standalone treatment for age-related retinal degeneration under conditions associated with reduced Nrf2 function.


Assuntos
Fator 2 Relacionado a NF-E2 , Degeneração Retiniana , Camundongos , Humanos , Animais , Lactente , Fator 2 Relacionado a NF-E2/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/metabolismo , Estresse Oxidativo , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo , Camundongos Knockout
20.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362202

RESUMO

Acute myeloid leukemia (AML) is a cancer of the myeloid blood cells mainly treated with chemotherapy for cancer remission, but this non-selective treatment also induces numerous side effects. Investigations with bioactive compounds from plant-derived foods against cancer have increased in the last years because there is an urgent need to search for new anti-leukemic agents possessing higher efficacy and selectivity for AML cells and fewer negative side effects. In this study, we analyzed the anti-leukemic activity of several phytochemicals that are representative of the major classes of compounds present in cruciferous foods (glucosinolates, isothiocyanates, hydroxycinnamic acids, flavonols, and anthocyanins) in the human acute myeloid leukemia cell line HL-60. Our results revealed that among the different Brassica-derived compounds assayed, sulforaphane (SFN) (an aliphatic isothiocyanate) showed the most potent anti-leukemic activity with an IC50 value of 6 µM in dose-response MTT assays after 48 h of treatment. On the other hand, chlorogenic acid (a hydroxycinnamic acid) and cyanidin-3-glucoside (an anthocyanin) also displayed anti-leukemic potential, with IC50 values of 7 µM and 17 µM after 48 h of incubation, respectively. Importantly, these compounds did not show significant cell toxicity in macrophages-like differentiated cells at 10 and 25 µM, indicating that their cytotoxic effects were specific to AML cancer cells. Finally, we found that these three compounds were able to induce the NRF2/KEAP1 signaling pathway in a dose-dependent manner, highlighting SFN as the most potent NRF2 activator. Overall, the present evidence shed light on the potential for using foods and ingredients rich in anticancer bioactive phytochemicals from Brassica spp.


Assuntos
Brassica , Leucemia Mieloide Aguda , Humanos , Brassica/metabolismo , Antocianinas/farmacologia , Antocianinas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Células HL-60 , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo , Compostos Fitoquímicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...